
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1991 Technical Paper

4. TITLE AND SUBTITLE

Validation of Three-Dimensional Incompressible Spatial Direct Numerical Simulation Code

A Comparison With Linear Stability and Parabolic Stability Equation Theories for

Boundary-Layer Transition on a Flat Plate

6. AUTHOR(S)

Ronald D. Joslin, Craig L. Streett, and Chau-Lyan Chang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 505-59-50-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17026

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TP-3205

11. SUPPLEMENTARY NOTES

Joslin and Streett: Langley Research Center, Hampton, VA; Chang: High Technology Corporation, Hampton,
VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 02

13. ABSTRACT (Maximum 200 words)

Spatially evolving instabilities in a boundary layer on a 
at plate are computed by direct numerical simulation
(DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is
used for the grid. A Chebyshev-collocation method is used normal to the wall; �nite-di�erence and compact-
di�erence methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction.
For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used for the time-splitting
method. The in
uence-matrix technique is used to solve the pressure equation. At the out
ow boundary, the
bu�er-domain technique is used to prevent convective wave re
ection or upstream propagation of information
from the boundary. Results of the DNS are compared with those from both linear stability theory (LST)
and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very
good agreement with those of LST (for small in
ow disturbance amplitudes). A measure of the sensitivity of
the in
ow condition is demonstrated with both LST and PSE theory used to approximate in
ows. Although
the DNS numerics are very di�erent than those of PSE theory, the results are in good agreement. A small
discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment
in the far �eld. Finally, a small-amplitude wave triad is forced at the in
ow, and simulation results are compared
with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations,
the implication being that the disturbance amplitudes are su�ciently small that nonlinear interactions are
negligible.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Direct numerical simulation; Boundary-layer transition; Boundary-layer stability;
Nonlinear boundary-layer stability; PSE theory

47

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NASA-Langley, 1992



Summary

Spatially evolving instabilities in a 
at-plate
boundary layer are computed by direct numeri-
cal simulation (DNS) of the incompressible Navier-
Stokes equations. In a truncated physical domain,
a nonstaggered mesh is used for the grid. A
Chebyshev-collocation method is used normal to the
wall, fourth-order �nite di�erences for the pressure
equation and fourth-order compact di�erences for the
momentum equations are used in the streamwise di-
rection, and a Fourier series is used in the span-
wise direction. For time stepping, implicit Crank-
Nicolson and explicit Runge-Kutta schemes are used
for the time-splitting method. The in
uence-matrix
technique is used to solve the pressure equation. At
the out
ow boundary, the bu�er-domain technique
is used to prevent convective wave re
ection or up-
stream propagation of information from the bound-
ary. Of the techniques available to force transition,
the present investigation uses approximations from
linear stability theory (LST) and the newly devel-
oped parabolized stability equation (PSE) theory for
in
ow forcing. Comparisons are made to (1) validate
the numerical techniques, (2) determine the e�ects
of grid resolution on the downstream evolving 
ow,
(3) determine the e�ects of physical domain trun-
cation on the disturbance, (4) determine the sensi-
tivity of the disturbances to changes in the in
ow
forcing, (5) test the out
ow boundary condition, and
(6) test the accuracy of PSE theory. The answers to
the above objectives would serve as a guide for future
DNS and PSE studies of more complex problems of
interest with an a priori knowledge of the preced-
ing numerical e�ects. As a note, the present study is
concerned with unbounded 
ow transition. Although
the related problem of bounded 
ows may be solved
in a similar manner, the discussion (and references)
in the present paper are, for the most part, con�ned
to unbounded 
ows.

Results from the simulations are �rst compared
with those of LST with a parallel mean 
ow used.
The computed disturbance amplitudes and phases
are in very good agreement with those of LST (for
small in
ow disturbance amplitudes). Simulations
are repeated with a nonparallel mean 
ow. The ex-
pected increase in growth rate and wavelength shift
are observed when compared with the parallel mean

ow case. A comparison is also made between re-
sults from PSE theory and DNS. A measure of the
sensitivity of the in
ow condition is demonstrated
with both LST and PSE theory used to approximate
in
ows on \coarse" and \�ne" grids. Very small dif-
ferences at the in
ow are ampli�ed downstream. Al-
though the DNS numerics are far removed from PSE

theory, the results agree relatively well. Finally, a
small-amplitude wave triad is forced at the in
ow,
and simulation results are compared with those of
LST to verify the accuracy of the three-dimensional
(3-D) aspect of the code with a known theory. Again,
very good agreement is found between DNS and LST
results for the 3-D simulations, and this agreement
indicates the disturbance amplitudes are su�ciently
small that nonlinear interactions are negligible. The
good agreement between DNS and LST results
veri�es that the 3-D aspect of the code is accurate.

1 Introduction

For the past century, numerous investigations
have been conducted in an attempt to predict the
transition from laminar to turbulent 
ow in bound-
ary layers. Most of this e�ort stems from the in-
dependent early theoretical accomplishments of Orr
(refs. 1 and 2) and Sommerfeld (ref. 3) at the turn
of the 20th century. Their achievement, based on
linearized disturbance equations, is a successful ex-
ample of classical hydrodynamic stability theory and
is referred to as the Orr-Sommerfeld equation. It
was not until some 20 years later that Tollmien
(ref. 4) was able to solve the Orr-Sommerfeld equa-
tion, and this solution led to the calculation of a
critical Reynolds number for the onset of instability.
On the same subject, Schlichting (ref. 5) computed
ampli�cation rates of disturbances in the bound-
ary layer. Part of the �rst experimental con�r-
mation of the theory was given by Schubauer and
Skramstad (refs. 6 and 7), who used a vibrating rib-
bon to impress a disturbance into the boundary layer
and hot wires (which were now available) to take
measurements. With these contributions (and oth-
ers) spanning some 40 years, theory and experiments
now agreed on the initial growth of disturbances.
Today, we have various mathematical and compu-
tational tools available to solve the Orr-Sommerfeld
equation. From this equation, much is now under-
stood concerning boundary-layer disturbances, more
commonly referred to as the Tollmien-Schlichting
(TS) waves.

Since its origination, stability theory has gained
wide acceptance and is now a well-established tool
in the research and engineering community. Further-
more, it is from stability theory that the �rst rea-
sonably comprehensive method for predicting tran-
sition was derived, the eN -method by Smith and
Gamberoni (ref. 8) and Van Ingen1. However, the

1 Van Ingen, J. L.: A Suggested Semi-Empirical Method

for the Calculation of the Boundary-Layer Transition Region.

Rep. no. VTH-74, University of Delft (The Netherlands), 1956.
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method is semiempirical and thus requires some fore-
knowledge of the 
ow undergoing transition. The
true physical problem involves disturbances that in-
teract in a nonlinear manner in later stages of transi-
tion, and these disturbances are embedded in a grow-
ing boundary layer. It is apparent that a method,
which accounts for nonparallel 
ow and nonlinear
interactions, is necessary to predict transition. At
present, such an all-encompassing method of transi-
tion prediction is beyond our grasp, but progress has
been made in recent years.

In the last decade, much excitement has arisen
because of the strides that have been made in the-
oretical developments for predicting stages of tran-
sition beyond the linear growth stage. Stemming in
part from pioneering attempts at nonlinear theories
by Benney and Lin (ref. 9) and Craik (ref. 10), Orszag
and Patera (ref. 11) and Herbert (ref. 12) derived a
theory, based on Floqu�et theory, which accounts for
an experimentally observed three-dimensional (3-D)
parametric instability. Although the governing equa-
tions are linearized and a local parallel 
ow assump-
tion is made, remarkable agreement is obtained be-
tween predictions from this new theory and experi-
mental results, in particular for the peak-valley split-
ting mode identi�ed by Klebano�, Tidstrom, and
Sargent (ref. 13) and for the peak-valley alignment
mode observed by Kachanov and Levchenko (ref. 14).
These are examples of two distinct and di�erent
routes to transition that are discriminated based on
the initial disturbance levels. Since its introduc-
tion in the early 1980's and subsequent veri�cation
throughout that decade, the theory for secondary in-
stabilities is generally accepted and is now widely
used by the research community as a tool to fur-
ther understand and predict transition in boundary
layers.

More recently, Herbert (ref. 15) and Bertolotti
(ref. 16) have devised a nonlinear, nonparallel com-
putational method based on the so-called \parabo-
lized stability equations" (PSE's). The full bene-
�ts and limitations of this new theory are yet to be
realized and are explored somewhat in this paper.
Prior to development of this theory, the only ap-
proach to solve the nonparallel, nonlinear boundary-
layer transition problem was by direct numerical
simulation (DNS), although researchers have had
some success with asymptotic methods to solve prob-
lems in the large Reynolds number limit (Smith
(ref. 17) and Hall and Smith (ref. 18)). To date,
most studies using DNS have been limited to the
temporal formulation, in which a spatially periodic
computational domain travels with the disturbance
and the temporal evolution of the disturbance is

computed. This enabled simulations into the later
stages of transition (Zang and Hussaini (refs. 19
and 20) and Laurien and Kleiser (ref. 21)), and thus
provided a data base of qualitative information that,
however, lacks the physically realistic spatial repre-
sentation. Spatial DNS provides needed quantitative
information about transition. But with spatial DNS,
obstacles exist that have prevented fully carrying out
such a study. Among these are the realistic spec-
i�cation of in
ow and out
ow conditions and high
demands on computational resources. Even with to-
day's supercomputers, current resources are insu�-
cient to fully simulate transition to turbulence in a
boundary layer in a spatial setting. However, Rai
and Moin (ref. 22) have demonstrated that the qual-
itative characteristics of the transition process can be
captured with todays computers.

Yet, progress in spatial DNS has been made by,
among others, Fasel, Rist, and Konzelmann (refs. 23
to 26) and Spalart (ref. 27) for boundary-layer 
ow
and Danabasoglu, Biringen, and Streett (ref. 28) for
channel 
ow. To date, results obtained from spatial
DNS have been compared qualitatively and, with
some success, quantitatively to results from linear
stability theory (LST), secondary instability theory,
and available experiments. For a more complete list
of accomplishments in transition prediction through
the use of DNS, refer to the recent review by Kleiser
and Zang (ref. 29).

The goal of the present research e�ort is to intro-
duce a spatial DNS approach that adequately handles
out
ow problems that can arise, that properly cap-
tures the 
ow physics, and that establishes a para-
metric understanding of DNS. The accomplishment
of this goal would lead to potential benchmark solu-
tions for use with future theories. To accomplish this
goal, con�dence in the numerical techniques must be
established. In this initial study, results from sim-
ulations of boundary-layer 
ow over a 
at plate are
compared with those from LST and PSE theory.

Symbols

Ao
n;m in
ow amplitudes of forced

disturbances

B LST matrix

Ci coe�cients for Runge-Kutta march-
ing, i = 1; 2; 3

Ci matrix coe�cients for LST,
i = 0; 1; 2; 3; 4eCi transformed matrix coe�cients for
LST, i = 0; 1; 2; 3; 4
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D collocation derivative operator

F right-hand side of pressure equation

Fr wave frequency

f(~y) similarity dependent variable

G right-hand side of eigenvector
decomposition technique

H(u) momentum equation operator

ht time-step size

hx streamwise step size

INF modi�ed in
uence matrix

L(u) momentum equation operator

NB size of modi�ed in
uence matrix

Nb beginning of bu�er domain

Nx;Ny ;Nz number of streamwise, wall-normal,
and spanwise grid points

P mean-
ow pressure component

p disturbance pressure component

~p instantaneous pressure

Q eigenvector matrix of D2-operator

Q�1 inverse of Q-matrix

Rx Reynolds number based on stream-
wise coordinate

R� Reynolds number based on local
displacement thickness

R�o Reynolds number based on in
ow
displacement thickness

sj attenuation function for bu�er-
domain technique

sp parameter for grid stretching
normal to wall

T period of disturbance, T = 2�=!

Tn(y) Chebyshev polynomial of order n

Tr matrix trace

t time

U; V;W mean-
ow streamwise, wall-normal,
and spanwise velocities

U mean-
ow velocity vector,
U = (U; V;W )

U1 free-stream velocity

u; v;w disturbance streamwise, wall-
normal, and spanwise velocities

~u instantaneous velocities, ~u = U+ u

u disturbance velocity vector,
u = (u; v;w)

XT transpose of fourth-order penta-
diagonal matrix

x; y; z streamwise, wall-normal, and
spanwise coordinate directions

ymax physical far-�eld boundary distance

~y similarity variable, ~y = y
p
Rx=x

y spectral domain variable, �y 2 [�1; 1]
�; � disturbance streamwise and span-

wise wave numbers

� computational domain

@� computational boundary

�� local displacement thickness

�o boundary-layer thickness at in
ow

��o displacement thickness at in
ow

� eigenvalue matrix of D2-operator

�x; �z disturbance streamwise and span-
wise wavelengths

� 
uid kinematic viscosity

� temporary variable, � = dv=d~y

� dependent variable for eigenvector
decomposition technique

 mean-
ow stream function

} pressure-like variable


 disturbance normal vorticity

! disturbance frequency

r divergence operator

Subscripts:

max maximum

n gradient normal to boundary

� tangential component

1 free-stream conditions

Superscripts:

m Runge-Kutta time step

(m) higher order derivatives
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n full-time-step quantities

o with respect to in
ow quantity

T matrix transpose

(v) �fth-order derivative

(vi) sixth-order derivative

� with respect to displacement
thickness

Notation:

B-6 Bertolotti PSE with six modes

C-5 Chang PSE with �ve modes

DNS direct numerical simulation

DL DNS with LST in
ow

DP DNS with PSE in
ow

LST linear stability theory

PSE parabolized stability equation

RK Runge-Kutta

rms root-mean-square

TS Tollmien-Schlichting

A circum
ex over a symbol indicates it is a series
coe�cient.

2 Governing Equations

The incompressible Navier-Stokes equations are
solved in the domain shown in �gure 1. The stream-
wise direction is x, the direction normal to the wall is
y, and the spanwise direction is z. The correspond-
ing instantaneous velocities are ~u = (~u; ~v; ~w) and the
pressure is ~p. The momentum equations are given by

~ut + (~u � r)~u = �r~p+ 1

R�o
r2~u (1)

and the continuity equation by

r � ~u = 0 (2)

where subscripts on the dependent variables denote
partial derivatives with respect to that subscripted
variable. The equations are nondimensionalized with
respect to the free-stream velocity U1, the kinematic
viscosity �, and some length scale at the in
ow (say,
displacement thickness ��o). A Reynolds number can
then be de�ned as R�o = U1�

�
o=�. The instantaneous

velocities ~u and pressure ~p may be decomposed into

mean-
ow components, U = (U; V;W ) and P , and

uctuating components, u = (u; v;w) and p:

~u(x; t) = U(x) + u(x; t) and ~p(x; t) = P (x) + p(x; t)

(3)

where x = (x; y; z). Thus, the 
ow �eld is a com-
posite of mean and unsteady solution components,
which are determined and computed in the following
manner.

2.1 Mean-Flow Component

The mean boundary-layer 
ow on a 
at plate
may be described by the boundary-layer equations,
which are parabolic in the streamwise (x) direction.
Although a marching algorithm may be used to
solve the equations for the mean 
ow (U; V ), the
widely used Blasius similarity pro�le is employed
for the present study. A detailed description and
derivation of the mean-
ow equations are provided
in appendix A.

2.2 Disturbance Component

The disturbance, or 
uctuating, components of
equations (3) are determined by solving the form
of the Navier-Stokes equations that results from our
substituting equations (3) into equations (1) and (2)
and subtracting out the mean-
ow equations. These
unsteady, nonlinear disturbance equations are

ut+(u �r)u+(U �r)u+(u �r)U = �rp+ 1

R�o
r2u

(4)
and the continuity equation is

r � u = 0 (5)

with boundary conditions

u = 0 at y = 0 and u! 0 as y !1 (6)

Out
ow conditions are provided by parabolizing the
governing equations (4) over a small portion of the
downstream computational domain. An illustration
of this is shown in �gure 1. This procedure, known as
the bu�er-domain technique, is described in a later
section.

Various analytical and numerical techniques are
now available to introduce a disturbance into the
boundary layer. For example, Fasel, Rist, and
Konzelmann (ref. 26) used time-periodic suction and
blowing, while Kral and Fasel (ref. 30) used heater
strips. An alternative form of disturbance forcing
is to introduce a prescribed time-periodic function
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at the in
ow or the free-stream boundary. For the
present study, the disturbance forcing takes the form
of eigenfunctions imposed at the in
ow boundary.
Since the emphasis of this study is to verify the nu-
merical techniques used in the simulations, a con-
trolled input is required, which may be used by the
DNS, LST, and PSE codes.

The in
ow condition uin is given by the mean 
ow
and a disturbance-forcing function, or

uin = Uo + uo at x = 0 (7)

where Uo is the in
ow mean component. For the
present simulations, the disturbances take the form
of a linear combination of individual functions:

uo =

m=MX
m=�M

n=NX
n=�N

Ao
n;m � Re

h
ûon;m(y)e

i(m�z�n!t)
i
(8)

where Ao
n;m represents the 2-D and 3-D disturbance

amplitudes, which for the 
at-plate boundary layer
are the amplitudes of Tollmien-Schlichting waves, �
is a spanwise wave number, and ! is the real distur-
bance frequency. Time periodicity is assumed, with
the period T = 2�=!. Also, ûon;m(y) represents the
complex eigenfunctions either found from solving the
Orr-Sommerfeld and Squire equations or obtained
from a local approximation of the PSE, and the eigen-
functions are normalized by the maximum stream-
wise component. Descriptions of LST and PSE the-
ory and their numerical solution procedures are given
in appendixes B and C.

3 Numerical Methods

In this section, the following numerical techniques
required for the spatial simulation are discussed:
(1) discretization(s) in the streamwise, wall-normal,
and spanwise directions; (2) time-splitting procedure,
from which Poisson equations (2-D) or Helmholtz
equations (3-D) for the pressure are obtained; (3) the
eigenvector-decomposition method and the in
uence-
matrix method, which are employed to solve for
the pressure; (4) slip-velocity corrections, which are
introduced because the pressure equation is inviscid
to ensure that the tangential boundary conditions
on velocity remain intact; and (5) bu�er-domain
technique, which is used to prevent wave re
ections
at the out
ow.

3.1 Spatial Discretization(s)

3.1.1 Discretization in the streamwise di-

rection. In the streamwise direction (x-direction),

fourth-order central �nite di�erences for the pres-
sure equation and compact di�erences for the mo-
mentum equations are used on the computational
domain of Nx discrete points. At boundary and near-
boundary nodes, fourth-order di�erences are used.
Although nonuniform grids have been implemented
and tested, the present study involves the use of
a uniform streamwise mesh. In this section, both
di�erencing methods are discussed.

The objection to, or di�culty with, using higher
order schemes comes from the required use of addi-
tional nodes to achieve the higher accuracy. For cen-
tral di�erencing, complications may arise at or near
a boundary, where insu�cient nodes are available for
the di�erencing. While approximations by forward or
backward di�erences may be used, this may reduce
the overall global order of the scheme or introduce
numerical instabilities.

For the standard central, forward, or back-
ward �nite-di�erence approximations, the function of
interest is expanded in a Taylor series as

fn+1 = fn + hxf
0
n +

h2x
2
f 00n + : : : +

hmx
m!

f
(m)
n

+ O(hm+1
x ) (9)

where fn is the function evaluated at node n; hx is
the step size, uniform for simplicity; and (m) denotes
the higher order derivatives. Through expansion of
neighboring nodes in similar series about node n and
combination with equation (9), fourth-order central-
di�erence approximations may be found for the �rst
and second derivatives f 0n and f 00n :

f 0n =
1

12hx
(fn�2 � 8fn�1 + 8fn+1 � fn+2) +O(h4x) (10)

f 00n =
1

12h2x
(�fn�2 + 16fn�1 � 30fn

+ 16fn+1 � fn+2) +O(h4x) (11)

These approximations are used for the interior nodes
(i.e., those nodes for which the derivative stencil does
not extend beyond the boundary nodes). For bound-
ary and near-boundary nodes, fourth-order forward
and backward di�erences formed in a similar man-
ner are used. An explicit form of these forward-
and backward-di�erence relations is provided in
appendix D.

As the order of the approximation increases, the
required number of boundary and near-boundary
relations and the corresponding required number of
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nodes per derivative stencil increase. Therefore, to
achieve higher accuracy without involving the use of
additional neighboring nodes, compact di�erencing
is introduced.

As originally suggested by Kreiss and Oliger
(ref. 31) and later discussed for 
uid dynamics prob-
lems by Hirsh (ref. 32), �rst and second derivatives
for a compact di�erence may be approximated by

f 0n =

 
Do

1 + 1
6h

2
xD+D�

!
fn (12)

and

f 00n =

 
D+D�

1 + 1
12h

2
xD+D�

!
fn (13)

where

Dofn =
1

2hx
(fn+1 � fn�1)

D+fn =
1

hx
(fn+1 � fn)

D�fn =
1

hx
(fn � fn�1)

9>>>>>>>>=>>>>>>>>;
(14)

Through multiplication of equations (12) and (13)
by the respective denominators, relations for the
derivatives may be found:

1

6
f 0n�1 +

2

3
f 0n +

1

6
f 0n+1 =

1

2hx
(fn+1 � fn�1) (15)

and

1

12
f 00n�1 +

5

6
f 00n +

1

12
f 00n+1 =

1

h2x
(fn+1 � 2fn + fn�1)

(16)

These equations yield tridiagonal systems, provided
appropriate boundary conditions are applied. The
approximations are fourth-order accurate and can
be solved e�ciently by LU-decomposition with
appropriate backward and forward substitutions.

To make an accuracy comparison between the
compact-di�erence (eqs. (15) and (16)) and the
central-di�erence (eqs. (10) and (11)) scheme, Taylor
series expansions are employed. As Hirsh has shown,
the truncation errors for the compact di�erences are

E(f 0n) = �
1

180
h4xf

(v) and E(f 00n) = �
1

240
h4xf

(vi)

(17)

while similar error analyses for the central di�erences
yield

E(f 0n) = �
1

30
h4xf

(v) and E(f 00n) = �
1

90
h4xf

(vi)

(18)

Although both schemes are fourth-order accurate,
the compact-di�erence scheme should lead to more
accurate approximations as a result of having smaller
coe�cients on the truncation error.

As yet, no mention has been made about the
boundary treatment for the compact-di�erence
scheme. At the boundaries, Hirsh (ref. 32) used
a one-sided fourth-order �nite di�erence. Adam
(ref. 33) suggested additional boundary relations that
include near-boundary derivatives in the formula-
tion; yet, the equations retain the tridiagonal nature.
However, these relations are third-order accurate and
indicate no additional bene�ts, compared with direct
application of high-order one-sided di�erences. So,
for the present compact-di�erence scheme, one-sided
fourth-order �nite-di�erence boundary conditions are
used. (See appendix D.)

Concerning the boundary condition treatment,
one might choose the second-order boundary condi-
tions since a numerical instability could be generated,
in particular, at the in
ow with the use of higher
order approximations. For the present incompress-
ible spatial DNS, this problem was not encountered
with fourth-order boundary conditions; but, in at-
tempts to use �fth-order boundary conditions or a
sixth-order compact-di�erence scheme, a numerical
instability appeared. Recently, this numerical insta-
bility for the sixth-order methods has been resolved
through an alternate boundary condition formula-
tion by Carpenter, Gottlieb, and Abarbanel (ref. 34).
This new �fth-order boundary treatment has en-
abled the use of a sixth-order compact-di�erence
scheme. Although numerical di�culties surround-
ing the sixth-order schemes have been resolved, the
remainder of this study involves the use of fourth-
order techniques since additional computational ex-
pense arises solely from the higher order method. In
a future study, a comparison of the fourth- and sixth-
order techniques may be undertaken to determine
if the accuracy gains with the sixth-order method
outweigh the additional computational expense.

3.1.2 Discretization in the wall-normal di-

rection. Normal to the wall (y-direction), Cheby-
shev series are used to approximate the disturbance
at Gauss-Lobatto collocation points. A Chebyshev
series is used since, as Gottlieb and Orszag (ref. 35)
have shown, it provides good resolution in regions
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of high gradients (e.g., near boundaries). Properties
of Chebyshev series with collocation grids are given
in Gottlieb, Hussaini, and Orszag (ref. 36). A de-
tailed discussion of spectral method properties and
their application is provided by Canuto, Hussaini,
Quarteroni, and Zang (ref. 37). In the present paper,
only a brief description of the necessary identities is
provided.

The Gauss-Lobatto points for Chebyshev series
are

yi = cos(�i=Ny) (i = 0; 1; � � � ;N y) (19)

where Ny is the number of domain intervals (or high-
est degree of Chebyshev polynomials in the series)
and Ny = Ny + 1 denotes the number of collocation
points. Chebyshev polynomials are de�ned on the
interval [�1, 1] and are given by

Tn(y) = cos(n cos�1 y) (20)

where n is the order of the Chebyshev polynomial Tn.
A function f(y) may be represented by a Chebyshev
series at the Gauss-Lobatto points as

f(y) =

NyX
n=0

anTn(y) (21)

where an represents the series coe�cients. Deriva-
tives of the function at collocation points may be
represented by

df(yi)

dy
= Di;jaj (22)

where repeated indices indicate summation. The
derivative matrix D is given by

Di;j =
ci
cj

(�1)i+j
yi � yj

(i 6= j; i; j = 0; 1; � � � ;Ny)

Dj;j = �
yj

2(1� y2j)
(j = 1; 2; � � � ;Ny � 1)

D0;0 = �
2N

2
y + 1

6
= �D

N y;Ny

9>>>>>>>>>>>=>>>>>>>>>>>;
(23)

where ci and cj = 1 for i; j = 1; 2; : : : ;Ny � 1 and
c0 = c

Ny
= 2. Higher order derivatives are simply

multiple powers of D, or

Dp = D
p

(24)

where p is the derivative order.

Since the spectral interpolation function equa-
tion (20) is de�ned on [�1, 1] and the physical prob-
lem of interest has a semi-in�nite domain [0;1] or a
truncated domain [0; ymax], a transformation is em-
ployed. Studies of spectral methods and mapping
tranformations in unbounded regions have been con-
ducted by Boyd (ref. 38) and Grosch and Orszag
(ref. 39). Here an algebraic mapping is used:

y =
ymaxsp(1 + y)

2sp + ymax(1� y)
(25a)

or

y =
(2sp + ymax)y � ymaxsp

ymax(sp + y)
(25b)

where y 2 [0; ymax), y 2 [�1; 1], ymax is the nor-
mal distance from the wall to the far-�eld boundary
in the truncated domain, and sp controls the grid
stretching in the direction normal to the wall. As
a result of the stretching, the normal derivatives in
equations (23) and (24) are modi�ed as follows:

D = mD and D2 = m2D
2
+mm0D (26)

where the metric is de�ned as m = dy=dy and
m0 = dm=dy.

3.1.3 Discretization in the spanwise direc-

tion. To simulate the evolution of 3-D disturbances,
the governing equations must be discretized in the
spanwise direction (z-direction) in addition to the
streamwise and wall-normal directions. Some ratio-
nale in the choice of discretization must be used since,
with this third dimension, the memory requirements
and cpu cost for a simulation can quickly exceed
current supercomputer capabilities. From boundary-
layer experiments (refs. 13 and 14) it has been ob-
served that a distinct periodic structure is evident in
the spanwise direction. From this observation, span-
wise periodicity is assumed, and this periodicity al-
lows for Fourier series representations. With Fourier
series, spectral accuracy is obtained in the spanwise
direction and fast Fourier transforms (FFT's) or sine-
cosine transforms may be used, either of which allows
for the fast computing of derivatives.

In general, a function f(x; y; z; t) is represented by
a Fourier series expansion in the spanwise direction:

f(x; y; z; t) =

(Nz=2)�1X
n=�Nz=2

f̂n(x; y; t)e
in(2�=�z)z (27)
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where Nz is the number of Fourier modes, �z = 2�=�
is the spanwise wavelength, and � is a speci�ed
spanwise wave number. To compute a derivative,
equation (27) is �rst transformed to Fourier space
by an FFT. The derivative is computed by

df̂n
dz

= i�̂nf̂n(x; y; t) (28)

where �̂n = n� and an inverse transform is used to
return the computed derivative to physical space.

Although the full Fourier representation (eq. (27))
is correct if the spanwise direction is periodic, more
cost-e�cient derivatives are computed by cosine and
sine expansions for the special, yet widely used, case
of symmetry about z = 0 (e.g., wave triads and
some secondary instability calculations). For the
simulation problem, even functions (i.e., u; v; and p)
are expanded with cosine series and odd functions
(i.e., w) are expanded with sine series:

fu; v; pg(x; y; z; t) =

NzX
n=0

fûn; v̂n; p̂ng(x; y; t) cos(n2�=�zz)

(29a)
and

w(x; y; z; t) =

NzX
n=0

ŵn(x; y; t) sin(n2�=�zz) (29b)

Equation (27) is used for a spanwise domain of a full
wavelength (�z), while the use of the symmetry as-
sumption with equations (29) permits computations
on half the domain, or a half-wavelength (�z=2). This
symmetry assumption decreases the computational
(cpu and memory) requirements by approximately a
factor of 2.

3.2 Time-Splitting Procedure

For the unsteady disturbance equations (4) to (6),
a time-splitting procedure is used with implicit
Crank-Nicolson di�erencing for normal di�usion
terms and an explicit third-order Runge-Kutta
method for all remaining terms. The Runge-Kutta
(RK) scheme, introduced by Williamson (ref. 40),
was implemented with the Crank-Nicolson method
for Taylor-Couette 
ow calculations by Streett and
Hussaini (ref. 41). This time-splitting procedure con-
sists of three intermediate RK stages, each stage of
the following form.

The pressure is omitted from the momentum
equation (4) for the fractional RK stage, and this

omission leads to

uy� um

hmt
= Cm

1 H
m(u) +

Cm
2

R�o
D2(uy+ um) (30)

where

Hm(u) = Lm(u) + Cm
3 H

m�1(u)

and

L(u) = (U � r)u+ (u � r)U+ (u � r)u� 1

R�o
r2
xzu

Here uy represents disturbance velocities at the in-
termediate RK stages, um represents velocities at
previous RK stages (m = 1; 2; or 3), u0 repre-
sents velocities at the previous time step, r2

xz =
@2=@x2 + @2=@z2, and ht is the time-step size. Re-
call that D is the derivative (eq. (26)). For a full RK
stage, the momentum equations with the pressure are

um+1 � um

hmt
= Cm

1
Hm(u) +

Cm
2

R�

o

D
2(um+1+ um)�rpm+1

(31)
Subtracting equation (30) from equation (31) leaves

um+1 � uy

hmt
=
Cm
2

R�o
D2(um+1 � uy)�rpm+1

= �r}m+1 (32)

where } is an introduced pressure-like quantity. By
taking the divergence of equation (32) and imposing
zero divergence of the 
ow �eld at each RK stage
(m+ 1), a pressure-like equation is obtained:

r2}m+1 =
1

hmt
(r � uy) (33)

which is subject to homogeneous Neumann boundary
conditions. (See ref. 41.) The solution procedure is

as follows. The intermediate RK velocities uy are de-
termined by solving equation (30). The pressure-like
correction }m+1 is found by solving equation (33).
Then, the full RK stage velocities um+1 are obtained
from equation (32). Upon solution of the above sys-
tem three consecutive times, full-time-step velocities
un+1 are determined. The RK coe�cients and time
steps are given by2664

C1
1 C1

2 C1
3

C2
1 C2

2 C2
3

C3
1 C3

2 C3
3

3775 =

2664
1 1

2 0

9
4

1
2 �4

32
15

1
2 �153

32

3775 (34a)
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and 8>><>>:
h1t

h2t

h3t

9>>=>>; =

8>><>>:
1
3
ht

5
12
ht

1
4ht

9>>=>>; (34b)

where the sum of the three RK time stages equals
the full time step ht.

3.3 Eigenvector-Decomposition Method

To obtain the pressure-like correction } for the
2-D and 3-D boundary-layer problems, solutions of
Poisson equations for each time step are required.
For 3-D simulations with spanwise periodicity as-
sumed, the pressure correction is determined in
transform space, for which the Fourier coe�cients
are solved. In transform space, the Poisson equations
become Helmholtz equations. In order to solve the
equations e�ciently, a fast elliptic solver is required.
For this purpose, the tensor-product, or eigenvec-
tor decomposition, approach is employed. Danaba-
soglu, Biringen, and Streett (ref. 28) used the eigen-
vector decomposition method for the 2-D channel
problem. The present solver description is for the 3-D
simulation problem.

The Helmholtz equations in transform space are
given by

r2
xy}̂n � �̂2n}̂n = F̂n (35)

where �̂n represents the spanwise derivative coe�-
cients, or wave numbers, of equation (28). The term

F̂n represents the transform coe�cients of F , where
F is the right-hand side of equation (33), and }̂n gives
the transform coe�cients of the desired solution, }.

With respect to matrix operations, (y; x) ordering
is used below. Discretized in y and x, the Helmholtz
equations become

eD2}̂n + }̂nX
T � �̂2n}̂n = F̂n (36)

where eD2 is the Chebyshev-collocation operator in
equation (26) modi�ed to include boundary condi-

tions, andXT is the transpose of the streamwise cen-
tral �nite-di�erence operator, which for the present
study is fourth-order accurate and leads to a penta-

diagonal matrix. The matrix eD2 may be decomposed
into eD2 = Q�Q�1 (37)

where � is a diagonal matrix of eigenvalues and Q

is the corresponding matrix of eigenvectors of eD2. A
new dependent matrix is introduced and de�ned as

�n = Q�1}̂n (38)

Substituting equations (37) and (38) into (36), one
obtains

��n + �nX
T � �̂2n�n = Ĝn (39)

where Ĝn = Q�1F̂n. Equation (39) is used to solve
for �n, which is then used in equation (38) to solve
for }̂n. Since the coe�cient matrix in equation (39) is
pentadiagonal for fourth-order streamwise discretiza-
tion, fast back substitutions result. The solution
is then transformed through inversion to physical
space. The derivative matrix D, its inverse, and
matrices Q and Q�1 are mesh-dependent matrices
and need to be calculated only once; the same is
true of the in
uence matrix, which is described in
the next section. To reduce the computational cost,
planes of the computational domain can be sent to
the solver for vectorization. Sending the entire com-
putational block may be done and leads to a more ef-
�cient solver, but the resulting memory requirements
far outweigh the cost savings.

3.4 In
uence-Matrix Method

Equations (30) to (33) are solved on a nonstag-
gered grid. An in
uence-matrix method is employed
to solve for the pressure. Streett and Hussaini
(ref. 41) used the method for the Taylor-Couette
problem, and later Danabasoglu, Biringen, and
Streett (ref. 28) used the method for the 2-D channel

ow problem. Instead of solving a Poisson-Neumann
problem, two Poisson-Dirichlet problems are solved.

The solution of the following Poisson-Dirichlet
problem, which is the pressure-like equation, is
sought:

r2} = F in � (40a)

}n = 0 on @� (40b)

where � is the computational domain, @� is the com-
putational boundary, and }n indicates a derivative
of the pressure-like quantity normal to the bound-
ary @�. To accomplish this, a sequence of solutions
to the following problem is �rst determined:

r2}i = 0 in � (41a)

}i = �i;j on @� (41b)

for each discrete boundary point xj . The Dirac delta
function �i;j is de�ned as �i;j = 1 for i = j and
�i;j = 0 for i 6= j. Upon computation of the vectors

of normal gradients }in at all the boundary points,
these vectors are then stored in columns to yield a
matrix that is referred to as the in
uence matrix, or

9



INF = [}1n; }
2
n; : : : ; }

NB
n ] (42)

where NB is the number of boundary points.

The in
uence matrix, which is dense, is of order
NB�NB for 2-D problems and of order NB�NB�Nz

for 3-D problems, and it is dependent on the com-
putational mesh only. Since the matrix is depen-
dent on the mesh, it need be calculated only once
for a given geometry. However, the memory require-
ments for the in
uence matrix for a 3-D problem
can quickly become overbearing and, thus, eliminate
the possibility of performing simulations into later
stages of transition. For example, this single ma-
trix may easily require 70 Mbytes of memory in the
early stages of transition of a standard 3-D problem
with Nz = 16. However, since the Helmholtz equa-
tion (35) is solved in Fourier space, where the coef-
�cients are independent of each other, this memory
requirement can be alleviated with a small penalty
of cpu time (fractions of a second). Through se-
quential reading of the planes NB � NB of the ma-
trix from disk, the 70-Mbyte requirement dwindles
to an acceptable 4-Mbyte size that is now indepen-
dent of the spanwise discretization. In particular, for
a Cray supercomputer, bu�er in(out) commands can
be used to read(write) data while the program con-
tinues to execute. Thus, the overhead cost is virtually
negligible.

The composed in
uence matrix gives the residuals
of } as a result of the unit boundary condition
in
uence, or

[INF ]} = Residual (43)

The value of one boundary condition is temporarily
relaxed so that the problem is not overspeci�ed. This
is done by setting one column of the in
uence matrix
to zero, except for the boundary point of interest,
which is set to unity. The corresponding residual in
equation (43) is exactly zeroed.

The Poisson equation with Neumann bound-
ary conditions is equivalent to the following solu-
tion of a Poisson problem and a Laplace problem
(or Helmholtz problems) with Dirichlet boundary
conditions. First, solve

r2}I = F in � (44a)

}I = 0 on @� (44b)

Again, compute the gradients normal to the bound-
ary }In. This gives the in
uence of the right-hand
side F on the boundary. Then, solve

r2}II = 0 in � (45a)

subject to the boundary constraint

}II = I�1NF � }In on @� (45b)

The �nal solution that satis�es the original problem
and the boundary conditions is } = }I � }II.

Since the gradient, or boundary condition, at one
discrete boundary point is relaxed in the in
uence-
matrix formulation, the desired condition (}n = 0)
may not hold at that boundary point. In order to
regain this boundary condition, the pressure prob-
lem (eqs. (44) and (45)) is resolved, but this time a
nonzero constant (say 0.01) is added to the right-
hand side of equations (44). A pressure correc-
tion } results. The composite solution satis�es the
boundary conditions at all discrete nodes and con-
sists, then, of a linear combination of } and }. This
combination is found by satisfying the following two
equations:

a1}n + a2}n = 0 on @�i (46)

and
a1 + a2 = 1 (47)

The �nal pressure correction }m+1 is then given by

}m+1 = a1}+ (1� a1)} with a1 = }n=(}n �}n)
(48)

Upon solution for }m+1, the full RK time-step veloc-
ities um+1 are found via equation (32). As a note,
the corner points are not included in the discretiza-
tion and are used in the tangential slip-velocity cor-
rection only. The pressure at the corners is of mi-
nor signi�cance and interpolations are su�cient to
compute these pressures.

3.5 Slip-Velocity Corrections

The pressure-like correction equation (33) is an
inviscid calculation and is well posed, provided that
boundary conditions on the wall-normal component
of velocity are enforced. At the end of each full RK
time step, a nonzero tangential velocity component
may arise at the computational boundary. This is
referred to as a \slip velocity." This slip velocity
may be made small in magnitude, compared with the
RK step size hmt , by a proper choice of intermediate
boundary conditions. The conditions used herein
were described by Streett and Hussaini (ref. 41),
based on the work of Fortin, Peyret, and Temam
(ref. 42).

The slip velocities on the boundary for equa-
tion (32) are

um+1
� = u�� � hmt r}m+1

� on @� (49)
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where � indicates a tangential component on the
boundary @�. If u�� = 0, then um+1

� = O(hmt ).
Expanding the gradient term of equation (49) into
a Taylor series about t = tm, one obtains

r}m+1
� = r}m� + hmt (r}m� )t +O[(hmt )

2] (50)

Approximate the time derivative term of equa-
tion (50) by

(r}m� )t =
r}m� �r}m�1�

hm�1t

+ O[(hmt )
2] (51)

and substitute equations (50) and (51) into equa-
tion (49). The slip velocity is reduced to O[(hmt )

3],
and the intermediate boundary conditions that result
are given by

u
�

� = uBC + hmt

��
1 +

hmt

hm�1

t

�
r}m� �

hmt

hm�1

t

r}m�1

�

�
+O[(hmt )

3] (52)

where uBC = 0 for a rigid wall and uBC = uo for an
in
ow condition or for a wall slot condition evaluated
at the appropriate time in the RK stage.

3.6 Bu�er-Domain Technique

The bu�er-domain technique for e�ecting a non-
re
ecting out
ow boundary treatment was intro-
duced by Streett and Macaraeg (ref. 43). The
technique is based on the recognition that, for
incompressible 
ow, the ellipticity of the Navier-
Stokes equations, and thus their potential for up-
stream feedback, comes from two sources: the vis-
cous terms and the pressure �eld. Examination of
earlier unsuccessful attempts at spatial simulations
indicated that upstream in
uence occurs through the
interaction of these two mechanisms; strong local ve-
locity perturbations interact with the condition im-
posed at the out
ow boundary to produce a pressure
pulse that is immediately felt everywhere in the do-
main, especially at the in
ow boundary. Therefore
both mechanisms for ellipticity have to be treated.
To deal with the �rst source of upstream in
uence,
the streamwise viscous terms are smoothly reduced
to zero through multiplication by an appropriate at-
tenuation function in a \bu�er region," which is ap-
pended to the end of the computational domain of
interest. The viscous terms are unmodi�ed in the do-
main of interest. To reduce the e�ect of pressure �eld
ellipticity to acceptable levels, the source term of the
pressure Poisson equation is multiplied by the atten-
uation function in the bu�er domain. This is akin to

introduction of an arti�cial compressibility in that re-
gion and locally decouples the pressure solution from
the velocity computation in the time-splitting algo-
rithm. Thus, in e�ect, the boundary-layer equations,
which are parabolic and do not require an out
ow
condition, govern the solution at out
ow. Finally,
the advection terms are linearized about the imposed
mean- or base-
ow solution in order that the e�ective
advection velocity, which governs the direction of dis-
turbance propagation, is strictly positive at out
ow
even in the presence of large disturbances.

The attenuation function used in this work is
similar to that of references 43 and 28:

sj =
1

2

�
1 + tanh

�
4

�
1� 2

(j �Nb)

(Nx �Nb)

���
(53)

where Nb marks the beginning of the bu�er do-
main and Nx marks the out
ow boundary loca-
tion. For illustration, the bu�er-domain region is
sketched in �gure 1. As shown subsequently for the
current problems, a bu�er-domain length of about
three streamwise wavelengths is adequate to pro-
vide a smooth enough attenuation function to avoid
upstream in
uence.

The original bu�er-domain implementation of ref-
erence 43 involved a fully spectral discretization, with
a spectral multidomain being used in the streamwise
direction as opposed to the high-order �nite di�er-
ences used herein and in reference 28. Thus, early
testing of the bu�er-domain method was done in an
even more sensitive setting. Reference 43 shows a
number of tests of the method in the context of chan-
nel 
ow, albeit they were produced with a code that
had a slight error and produced a small kink in the
wall vorticity distribution at out
ow. Corrected, the
fully spectral channel-
ow simulation code produced
results that agree with linear stability theory to �ve
signi�cant digits in disturbance growth rate. Addi-
tional unpublished test cases included simulations of
Poiseuille-Benard 
ow, in which a strongly unstable
wall temperature condition was imposed; the temper-
ature equation was included in the solution scheme
with the Boussinesq approximation. For this 
ow,
the unstable thermal boundary conditions produced
large recirculation cells, which in some cases had ver-
tical disturbance velocities three times larger than
the imposed Poiseuille base-
ow centerline velocity.
These recirculation cells were produced by growth of
the instability (seeded by numerical roundo� error
of the computer), a process that is known to pos-
sess a global, rather than convective, instability na-
ture. The lack of upstream in
uence even in this ex-
treme test was con�rmed by comparison of vorticity
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distributions across the channel for channel lengths
that contained between 5 and 10 cells.

4 Results

For the present study, the numerical techniques
employed for the spatial DNS code are systemat-
ically veri�ed through comparison with the well-
established LST and the more recently devised PSE
theory. First, the present solutions from LST are
compared with previously published results. Next,
the results from the DNS with a 2-D disturbance
forcing for both parallel and nonparallel mean 
ows
are compared with the LST results. Third, DNS re-
sults from 2-D disturbance forcing are compared with
the PSE predictions. The sensitivity of the in
ow
forcing is demonstrated. Finally, a 3-D simulation
is conducted and discussed. The DNS results from
wave-triad forcing are compared with LST results for
small-amplitude disturbances. The authors extend
their thanks to Gokhan Danabasoglu of the Depart-
ment of Aerospace Engineering Sciences, University
of Colorado at Boulder, for the use of his channel sim-
ulation code. Thanks also go to Fabio Bertolotti at
the Institute for Computer Applications in Science
and Engineering, Hampton, Virginia, for supplying
his PSE results.

4.1 Solutions of LST

Although additional documentation of results de-
rived from LST is arguably unnecessary in this era,
for completeness and since a comparison of LST re-
sults with the DNS results is a part of this study,
a brief independent code veri�cation is performed
for solving the Orr-Sommerfeld{Squire problem, as
described in appendix B.

Results of the Orr-Sommerfeld equation are well
documented in the literature. Herein, comparisons
are made with the results of Jordinson (ref. 44),
who used a �nite-di�erence approach. For a 2-D
disturbance with Reynolds number R� of 998 and
frequency ! of 0.1122, Jordinson found the stream-
wise wave number � of 0:3086 � i0:0057. If an
a priori approximation of the eigenvalue is unknown,
the spectral global method provides an initial esti-
mate of the eigenvalue. With an initial guess (say,
0:3086 � i0:0057), the local method is used to re-
�ne the eigenvalue. Convergence results for the lo-
cal re�nement method are shown in table 1. The
present results are in good agreement with those of
Jordinson.

Figure 2 shows the corresponding eigenfunctions
for the above parameters. Good agreement occurs

Table 1. Eigenvalues From LST

[R� = 998;! = 0:1122;ymax = 75; sp = 10]

Ny �

32 0:3086817� i0:0055527

36 0:3086085� i0:0057926

40 0:3086050� i0:0056964

44 0:3085825� i0:0057164

48 0:3085946� i0:0057069

52 0:3084899� i0:0057088

56 0:3085920� i0:0057083

60 0:3085912� i0:0057084

in this comparison of eigenvalue and eigenfunction,
which demonstrates that sound results of LST are
available for the DNS veri�cation.

4.2 Comparison of 2-D DNS and LST

In this section, the accuracy of the numerical
methods used for the DNS calculations is tested
for small-amplitude disturbances through compari-
son with LST results. Initially, a parallel mean 
ow
is assumed. Although this is a physically unrealistic

ow, it adequately mimics the LST assumptions and
provides a good initial test case. A Reynolds number
R�o of 900 and wave frequency Fr of (!=R

�)�106 = 86
at the in
ow are chosen somewhat arbitrarily for the
test case. In an attempt to determine the grid resolu-
tion requirements, computations are performed on a
variety of grids from 40lx� 41 to 100lx� 61 (stream-
wise � wall-normal), where lx refers to the number of
TS streamwise wavelengths included in the domain
and 40lx denotes 40 grid points per wavelength. If,
for example, lx = 3, then the grid for 40lx consists of
120 points in the streamwise direction. The results
obtained from each grid are in agreement.

In the physical domain, the streamwise compu-
tational domain length is varied, depending on the
number of TS wavelengths of information required.
Normal to the wall, the domain length is �xed and ex-
tended from the wall to an upper truncation distance
where the far-�eld boundary conditions are imposed.
For parallel 
ow, the far-�eld boundary is varied from
y� = 50 to 100 (where y� = y=��o). A concern with
the primitive variable formulation lies in the pres-
sure calculation, which incidentally is avoided with
the velocity-vorticity approach as a result of not hav-
ing to solve for the pressure quantity. If the far-�eld
boundary is an insu�cient distance from the wall, an
erroneous disturbance arises throughout the compu-
tational domain. This erroneous disturbance arises

12



as a result of enforcing the far-�eld boundary condi-
tions too close to the wall. Similar errors arise with
di�erent numerical procedures. For example, distur-
bances in a boundary layer exponentially decay when
approaching the far �eld. Using a shooting proce-
dure, one can integrate the LST equations from the
wall to the far-�eld boundary and match the com-
puted solutions with asymptotically known solutions.
If this matching is performed an insu�cient distance
from the wall, the computations will not converge
to the correct solution. Similarly, the present error,
which can arise from the far-�eld boundary condi-
tions imposed an insu�cient distance from the wall,
leads to incorrect results.

From the computations with a parallel 
ow, a far-
�eld boundary of y� = 50 appears to be the minimum
distance for an acceptable disturbance error. Normal
to the wall, grid stretching is used for the boundary-
layer computations in order to obtain meaningful re-
sults e�ciently. Stretching factors sp of 6 to 12 are
chosen to provide a dense distribution of collocation
points near the wall. (A smaller sp clusters more
points near the wall.) The number of time steps per
TS wave period is varied from 200 to 1000 in order
to arrive at a rational choice of the time-step size
required. Visual agreement of the results is found
for each of the time-step test cases. (This agreement
translates to no more than 0.1-percent error.) Since
the time-splitting procedure is third-order accurate,
larger time-step sizes may be used (compared with
those of a second-order Adam-Bashforth method).
Computations of the present type involve numer-
ous parameters (e.g., three-directional grid, far-�eld
boundary location, streamwise domain length, and
time-step size). To remove one of these parame-
ters, a small time-step size is chosen. Hereafter, 320
time steps per period are used to maintain temporal
accuracy through the nonlinear simulations.

As a �rst example, the streamwise direction con-
sists of approximately 7 TS wavelengths with 40 grid
points per wavelength. Further, these seven TS wave-
lengths are subdivided into a physical domain of
four wavelengths and a bu�er domain of three wave-
lengths. For the in
ow, a 2-D disturbance described
by equation (8) with amplitude Ao

1;0 of 0.1 percent is

forced. The solutions of the Orr-Sommerfeld equa-
tion are used for the disturbance pro�le. The in-

ow forcing is turned on abruptly, and the results of
the simulation after three and eight periods of forc-
ing at the in
ow boundary are compared with LST
predictions in �gure 3. The computed phase and am-
plitude for the streamwise u and wall-normal v dis-
turbance velocity components with downstream dis-
tance are in agreement with the LST results. After

eight periods of forcing, the leading wave has exited
the computational domain without wave re
ections.
This is an indication that the bu�er-domain tech-
nique is functional. From LST, the spatial growth
rate is �i = �0:004509. Growth rates from the DNS
are calculated by a simple central-di�erence approxi-
mation with the local maximum disturbance stream-
wise velocity component umax; this simple approxi-
mation yields the results and errors shown in table 2
for various grids. Very good agreement is found be-
tween LST and the present DNS results, compared
with results from the crude di�erential method used
to compute �i.

Table 2. DNS Growth Rates From Simple
Central-Di�erence Approximations

Nx �Ny ��i Errora, percent

40lx � 41 0:004438 1:57

60lx � 41 :004473 :80

80lx � 41 :004494 :33

40lx � 61 :004440 1:53

60lx � 61 :004473 :80

80lx � 61 :004494 :33

aError based on comparison with LST growth rate of

�i = �0:004509.

As demonstrated in �gure 3, the bu�er-domain
technique has permitted waves to exit the out
ow
boundary without wave re
ection. This is accom-
plished by specifying a bu�er domain of three TS
wavelengths. We determine this length by compar-
ing the computed results using various bu�er re-
gions with LST. To demonstrate the e�ects of using
a bu�er domain of insu�cient length, the previous
DNS results of �gure 3 are shown with erroneous
results in �gure 4. The incorrect results occur for
a bu�er-domain length of one TS wavelength. A
number of bu�er-domain parameter variations may
be found that are adequate to implement the out-

ow conditions. The length of the bu�er domain,
the number of grid points, and the slope of the at-
tenuation function are the important elements that
may be varied. It is likely that having a small slope
and a small change in slope of the function relative
to the grid spacing is of the most importance; how-
ever, this postulation has not been con�rmed by a
parameter study. With the present attenuation func-
tion (eq. (53)), the slope is governed by the bu�er-
domain length and becomes smaller with length in-
crease. Hence, the three-wavelength domain provides
an adequate out
ow region, while the one-wavelength
domain does not.
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Next, a nonparallel mean 
ow is used and the
simulations are repeated. To ensure accuracy, 60 or
more points per wavelength are used hereafter. For
the nonparallel mean 
ow, computations with four
periods of forcing are conducted. The streamwise u
and wall-normal v velocity amplitudes of the distur-
bance, as computed by simulation and with LST, are
shown in �gure 5. The change in the length scale,
as a result of the growing boundary layer, is evident
and leads to an increase in growth rate and a shift in
wavelength. Since R�o = 900 and Fr = 86 correspond
to a growing mode near the lower branch of the neu-
tral curve, increasing growth rates are expected with
downstream propagation. This is consistent with the
results in �gure 5. Since LST neglects nonparallel
e�ects, exact quantitative agreement is not expected
here.

In summary, the numerical techniques used for
spatial DNS were tested by a comparison with LST.
This comparison was made because LST provides an
adequate tool to verify the spatial simulation results
for small-amplitude disturbances. Also, since LST is
universally accepted and is a well-established theory,
it lends credence to the DNS results. A paramet-
ric study was conducted to determine the e�ects of
grid re�nement and domain size and to determine an
adequate time-step size. Furthermore, the out
ow
boundary treatment was successfully tested. A com-
parison with LST is limited in scope because of the
underlying assumptions of the theory. Better insight
into the 
ow physics of transition and a better un-
derstanding of the DNS numerics could be achieved
if results from DNS were compared with a more
complete theory or experiments.

4.3 Comparison of DNS and PSE Theory

Recently, a new theory (PSE) has emerged that
accounts for boundary-layer growth and nonlinear
disturbance interactions. In this section, the results
from spatial DNS are compared with PSE theory
predictions. First, the e�ects of in
ow disturbance
variations and grid re�nement on the solutions of the
DNS in the linear and nonlinear regime are discussed.
Second, DNS results are compared with those of PSE
theory. Inferences are drawn by comparing DNS
results to the distorting mean 
ow results of PSE
theory.

As with Bertolotti (ref. 16), calculations are made
with an in
ow Reynolds number R�o of 688.315, a
frequency Fr of 86, and a 2-D disturbance forcing
at the in
ow with amplitude Ao

1;0 of 0.25 percent

rms. The in
ow corresponds to a streamwise location
prior to branch I of the neutral curve, in a region
of disturbance decay. With this in
ow amplitude,

the disturbance decays initially until branch I of the
neutral curve is reached, where the wave then begins
to grow. The disturbance amplitude grows through
the region of instability. Farther downstream, after
passing branch II of the neutral curve and entering
the region of stability, the wave saturates, or decays.
The task at hand is to accurately predict the growth
and decay of this evolving wave.

4.3.1 DNS parameter variation. How dis-
turbances are ingested into the boundary layer and
the e�ects of this ingestion are topics of the study
of \receptivity." (See Reshotko, ref. 45.) For the
present study, the presence of an ingested distur-
bance is assumed, and the evolution of that dis-
turbance with downstream distance is computed;
however, it is of utmost importance to know and
understand how small changes in the disturbance
(amplitude or pro�le) a�ect the computed down-
stream evolution. It is generally accepted that small
di�erences in disturbance amplitudes at ingestion
into the boundary layer lead to varying locations of
transition. Although these di�erences in the distur-
bance may be small at the in
ow, they may amplify
downstream.

To demonstrate the sensitivity of spatial DNS to
in
ow disturbance variations, two speci�c DNS com-
putations are performed with in
ows from LST and
PSE approximations of the Navier-Stokes equations.
Hereafter, these two simulation cases are referred to
as DL and DP, respectively. Since PSE theory is an
integral method, its in
ow condition must be pre-
scribed by some local approximation, such as was
prescribed and used by Chang, Malik, Erlebacher,
and Hussaini (ref. 46). The DNS computations are
performed on �ve di�erent grid and in
ow variations
and are forced for approximately 28 to 31 TS peri-
ods. These �ve cases are shown in table 3. These
test cases give a variation in in
ow, grid resolution,
and wall-normal domain length.

Table 3. Direct Numerical Simulation Test Cases

Case Nx �Ny Far �eld y�
max

DL-41 60lx � 41 75

DP-41 60lx � 41 75

DL-61 60lx � 61 75

DP-61 80lx � 61 100

DP-81 60lx � 81 75

Figure 6 shows the maximum streamwise am-
plitudes of the Tollmien-Schlichting (fundamental)
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wave u1, the mean-
ow distortion u0, and the �rst
harmonic u2 with downstream distance for LST and
PSE in
ows on the grid 60lx�41 (DL-41 and DP-41).
In the regions of small amplitudes (linear), the results
from both in
ows are in good agreement. Farther
downstream, the wave amplitudes increase to levels
where nonlinearities are signi�cant. A slight varia-
tion in the results for the two in
ows arises; at the
saturation of the fundamental wave, the di�erence
between the two wave amplitudes is 2.5 percent. The
streamwise u and wall-normal v velocity components
for the LST and PSE in
ow pro�les are given in �g-
ure 7. The LST pro�le is almost indistinguishable
from the PSE pro�le. One might initially overlook
the in�nitesimal di�erences, but these di�erences are
clearly ampli�ed downstream (�g. 6). This suggests
that the evolution of a disturbance is very sensitive
to small changes in that disturbance. Careful consid-
eration of the disturbance inputs is of utmost impor-
tance when any computed results are compared with
those of theory or experiments; otherwise, improper
conclusions could result.

For the next comparison, the computation grid is
re�ned to 60lx � 61 (DL-61) and 80lx � 61 (DP-61),
with corresponding far-�eld boundaries of y�max = 75
and y�max = 100. The resulting streamwise ampli-
tudes of the fundamental wave u1, the mean-
ow dis-
tortion u0, and the �rst harmonic u2 are shown with
downstream distance in �gure 8. Similar to the pre-
vious results (�g. 6), the amplitudes agree in the lin-
ear regime and a maximum discrepancy appears near
saturation. Altering the far-�eld distance and re�n-
ing the streamwise grid leads to insigni�cant varia-
tion in visual comparisons of the results. However,
re�ning the normal grid from 41 to 61 collocation
points leads to larger saturation amplitudes. This
e�ect indicates that the normal grid may not be ade-
quate. To obtain a grid-resolved solution, a �nal test
case (DP-81) is computed for 81 collocation points
with a PSE in
ow. Results obtained on the vari-
ous grids with a PSE in
ow are shown in �gure 9.
The results indicate that a grid-resolved, or nearly
grid-resolved, solution has been attained for the in-

ow disturbance considered. Also, note that a coarse
grid leads to an underprediction of the saturation
amplitudes for the fundamental wave, the mean-
ow
distortion, and the �rst harmonic.

To obtain the results shown in �gure 9, a bu�er
domain of three TS wavelengths and 320 time steps
per period is used. For the DP-81 case, the compu-
tations are restarted and permitted to continue until
the leading wave front has exited the out
ow bound-
ary. This successfully demonstrates that the bu�er-
domain technique is functional for the nonlinear

calculations. Finally, the computations are restarted
using 416 time steps per period to determine if the re-
sults are time accurate. Visual comparisons of these
results with those of �gure 9 reveal no di�erences
with the use of di�erent time-step sizes. So 320 time
steps per period are su�cient for the present test
problem.

4.3.2 Results of DNS and PSE theory. In
this section, the nonlinear spatial simulation results
are compared with PSE calculations of Chang et al.
(ref. 46) and Bertolotti (ref. 16). With the approach
of Chang et al., a parametric study was conducted.
It was determined that 100 points normal to the wall,
a normal distance of 100�o, and 5 modes of the series
given by equation (C1) lead to su�ciently accurate
results for the present test problem. Any further re-
�nement of the PSE grid or number of series modes
leads to no visible change in the results. The stream-
wise step size was chosen from a comparison with a
method of multiple-scales solution for a linear dis-
turbance evolution. For appropriate step sizes good
visual agreement of the results was found. The re-
sults of Bertolotti were obtained with six modes of
the series from equation (C1). Hereafter, the Chang
et al. and Bertolotti PSE cases are referred to as C-5
and B-6, respectively. Bear in mind that questions
concerning PSE parameterization have not yet been
fully answered. This is illustrated in the compari-
son of the C-5 and B-6 results, shown in �gure 10.
The streamwise amplitudes of the fundamental wave
u1, the mean-
ow distortion u0, and the �rst har-
monic u2 are shown with downstream distance. Good
agreement of the two PSE results is found for the
fundamental-wave amplitude in both the linear and
nonlinear regimes, except for a small discrepancy in
the saturation amplitude, which may be attributed
to small di�erences in the in
ow disturbance (�gs. 6
and 8). However, a signi�cant unexplained di�erence
in the C-5 and B-6 mean-
ow distortion quantities
does appear. Similar to the DNS results (�g. 9), the
C-5 results capture early evidence of the �rst har-
monic between R� = 690 and 900 (barely visible),
while the B-6 results do not. With these di�erences
in the PSE results noted, the converged DNS results
(DP-81) are compared with the C-5 PSE results be-
low. The PSE results of Bertolotti have been com-
pared with DNS results in less detail than that of the
present paper. (See ref. 15.) Good agreement was
indicated by the Bertolotti comparison. Unlike the
present study, wherein the same disturbance ampli-
tudes and pro�les are used, the Bertolotti comparison
involved a matching of the disturbance amplitudes at
some downstream location.
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This C-5 case was selected and compared with the
DP-81 results since it is the most controlled compar-
ison: both calculations are forced with the same in-

ow disturbance. In �gure 11, maximum streamwise
amplitudes of the fundamental wave, the mean-
ow
distortion, and the �rst harmonic with downstream
distance from DP-81 are compared with the C-5 re-
sults. Results for both the fundamental wave and the
�rst harmonic are in good quantitative agreement
throughout the linear and nonlinear regions, while
some discrepancy occurs with the mean-
ow distor-
tion quantity in the nonlinear region. It may be ad-
vantageous to view this comparison on a logarithmic
scale. (See �g. 12.) A comparison of this type sug-
gests that results for the fundamental wave, the �rst
harmonic, and the mean-
ow distortion are in better
agreement than is shown in �gure 11. Also, the early
evidence of the �rst harmonic between R� = 690 and
900 is visually drawn out. It is apparent that �nite-
amplitude di�erences are suppressed while small dif-
ferences in near-zero amplitudes are exaggerated as
a result of the logarithmic scaling.

To further examine the DP-81 and C-5 results,
disturbance pro�les at two streamwise locations are
presented in �gures 13 to 16. Figures 13 and 14 show
streamwise components at streamwise locations cor-
responding to local Reynolds numbers of R� = 1413
and 1519, respectively. Figures 15 and 16 show wall-
normal components at the same respective stream-
wise locations. As shown in �gure 11, the �rst down-
stream location is midway through the calculation,
where the mean-
ow distortion has a sudden rise,
and the second is near the fundamental-wave satu-
ration. The pictured mean-
ow distortion, funda-
mental wave, and �rst and second harmonic pro�les
predicted by DP-81 and C-5 are in good qualitative
as well as quantitative agreement, even in regions of
high gradients. As before, the exception lies in the
mean-
ow distortion quantity. The disturbance pro-
�les of the streamwise components reveal that the
DNS results agree well with the PSE results in re-
gions of positive in
uence on the mean 
ow, while
in regions of negative in
uence PSE theory predicts
stronger distortions than does DNS. From �gures 15
and 16, it is apparent that the wall-normal compo-
nent of the mean-
ow distortion computed by DP-81
is in agreement with the C-5 results near the wall,
with the discrepancy increasing with distance from
the wall. Most likely this discrepancy in the results
is due to homogeneous Neumann conditions imposed
in the far-�eld wall-normal component of the mean-

ow distortion for PSE theory. Unlike the DNS ap-
proach, this approach leads to a nonzero wall-normal
mean-
ow component in the far �eld. As a result,

the mean 
ow varies from the Blasius (mean) 
ow.
This variation is shown in �gure 17 by a compari-
son of results from the far-�eld Blasius solution with
those from the PSE solution. The maximum di�er-
ence in the mean 
ows occurs near the location of
wave saturation.

As a �nal test, a simulation was repeated to deter-
mine the e�ects of Neumann far-�eld boundary con-
ditions for the wall-normal component. For compu-
tational e�ciency, the DP-61 case was used since the
results appear su�ciently converged with 61 colloca-
tion points. (See �g. 9.) The results are shown in �g-
ure 18 along with the previous DP-61 and C-5 results.
Changing the far-�eld boundary conditions results in
no apparent variation in the fundamental-wave and
the �rst harmonic results; however, the Neumann
boundary condition a�ects the mean-
ow distortion
quantity slightly. Larger amplitudes of the mean-
ow
distortion result. The streamwise and wall-normal
disturbance components for the DP-61 case with the
Neumann far-�eld condition are given with the C-5
results in �gures 19 to 22. These results correspond
to R� = 1413 and 1519. A careful comparison of
the present pro�les with the previous results (�gs. 13
to 16), which have homogeneous Dirichlet far-�eld
boundary conditions, reveals that better agreement
between results from DNS and from PSE theory is
found. Most signi�cantly, the streamwise mean-
ow
distortion pro�les with the Neumann boundary con-
dition are in better agreement. Only slightly better
agreement is achieved for the wall-normal mean-
ow
distortion pro�les. It appears the PSE theory with
the Neumann boundary condition has a strong ef-
fect on the mean-
ow distortion and only a mild to
negligible e�ect on the fundamental wave and the
harmonics.

It is important to understand the di�erences in
the DNS and PSE theory numerical methods to prop-
erly draw conclusions from the above comparisons.
For the PSE theory approach, the disturbance is rep-
resented by a Fourier series, as described in appen-
dix C. The equations are solved in coe�cient space,
where the dependent variables are the Fourier coe�-
cients. Boundary conditions are imposed on each co-
e�cient independently. For the zero-order coe�cient
(mean-
ow distortion), the boundary-layer equations
result; thus, the natural far-�eld boundary condition
is a homogeneous Neumann condition on the wall-
normal velocity component. For the fundamental
wave and the harmonics, the homogeneous Dirichlet
boundary conditions are the natural physical choice
in the far �eld. For the DNS approach, the full-
disturbance equations are solved and boundary con-
ditions are imposed on the disturbance. A physically
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realizable assumption is that the disturbances vanish
in the far �eld, or free stream; thus, homogeneous
Dirichlet boundary conditions on the disturbance are
a \good" choice. When the DNS results are com-
pared with the PSE theory results, di�erences should
appear as a result of the di�erent boundary condi-
tions used. It is apparent that these di�erences are
small and become most apparent in the mean-
ow
distortion quantities. Some DNS results were ob-
tained with the Neumann boundary conditions used
in the far �eld and are given with PSE theory results
in �gures 18 to 22. Again di�erences in the results
are found. Evidently, signi�cant di�erences remain in
the boundary condition treatment even though both
approaches use Neumann conditions. For the DNS
case, a Neumann disturbance boundary condition is
enforced, while for PSE theory, a Neumann mean-

ow distortion component is enforced. This variation
suggests that the 
ow may exit the far-�eld bound-
ary in the DNS approach with nonzero velocities in
the fundamental wave and the harmonics, while this
cannot happen when the PSE theory is used. Ba-
sically, this di�erence suggests that the DNS results
will not be identical to the PSE theory results.

Another possible explanation for the small dis-
crepancy in the comparison of DNS with PSE the-
ory is that as the disturbance grows and reaches �-
nite amplitudes, an induced pressure gradient arises,
which can be calculated by DNS. The PSE theory ap-
proach assumes negligible streamwise gradients, and
the boundary-layer equations result for the mean-

ow component; thus, PSE theory cannot account
for the existence of the induced streamwise pres-
sure gradient. This explanation to the discrepancy is
under consideration and may be explored further.

4.4 Comparison of 3-D DNS and LST

To demonstrate the extension to allow for 3-D dis-
turbances with a Fourier series (eqs. (27) and (29))
used in the spanwise direction, a �nal comparison
is made between 3-D spatial DNS results and LST
results for the parallel boundary layer. As in sec-
tion 4.2, an in
ow Reynolds number R�o of 900 and a
wave frequency Fr of 86 are used. Computations are
performed on a mesh 60lx�41�5 (streamwise � wall-
normal � spanwise) involving cosine-sine transforms.
In the streamwise direction, the computational do-
main is six TS wavelengths long (three physical and
three bu�er), and each time period is divided into 320
time steps. At the in
ow, a 2-D fundamental wave
with amplitude Ao

1;0 of 0.01 percent and a pair of

oblique waves each with amplitude Ao
1;�1 of 0.01 per-

cent and spanwise wavelength �z of 20� are intro-
duced. The results at spanwise locations of z = 0 and

z = �z=4 after four TS periods of wave-triad forcing
are given with LST results in �gures 23 and 24. Good
agreement is found for the small amplitudes consid-
ered. As a result of the good agreement between the
DNS results and the LST results, one can conclude
that the disturbance amplitudes are su�ciently small
that nonlinear interactions are negligible.

5 Conclusions and Future Directions

In the present paper, a spatial direct numerical
simulation (DNS) approach has been introduced for
two- and three-dimensional (2-D and 3-D) boundary-
layer transition problems. The numerical techniques
have been tested by comparison of DNS results with
results from the linear stability theory (LST) and
from the newly developed parabolized stability equa-
tion (PSE) theory. Results of the present study are
as follows:

1. Resulting wave amplitudes and phase from
the DNS are in very good agreement with those
from LST for 2-D and 3-D small-amplitude
disturbances.

2. The in
uence and e�ect of small di�erences at
the in
ow have been demonstrated using LST
and PSE theory pro�les at the in
ow. Even very
small di�erences in amplitude or pro�le become
ampli�ed downstream.

3. In the comparison of DNS results with those
of PSE theory, good overall quantitative agree-
ment is found in the amplitudes and pro�les.
Questions of boundary condition treatment have
arisen. A di�erence in the far-�eld boundary con-
dition treatment for the PSE theory is identi-
�ed and likely leads to the di�ering mean-
ow
distortion quantities. For transition prediction,
where integral quantities are of importance, the
PSE theory is likely to be a useful tool for the
engineer.

Simulation studies of transition on swept wings,
large-amplitude wave-wave interactions, 3-D suction
and blowing for generating streamwise vortices, and
subharmonic forced transition are all underway. Fur-
ther detailed comparisons of PSE theory with spatial
DNS for 3-D transitioning 
ows are also in progress.
All these ongoing studies are directed toward quanti-
fying transitional 
ows, which previously could only
be solved for qualitative information.

NASA Langley Research Center

Hampton, VA 23665-5225

June 2, 1992
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Appendix A

Mean-Flow Equations

For a laminar boundary layer, an order of mag-
nitude analysis yields the importance of each term
in the Navier-Stokes equations. Prandtl (ref. 47) ob-
tained the �rst estimate by neglecting terms of or-
der 1=R2

x and higher. This led to the now-famous
boundary-layer equations. For a 2-D, incompressible

ow, these are

@U

@x
+
@V

@y
= 0 (A1)

U
@U

@x
+ V

@U

@y
= �

@P

@x
+

1

Rx

@2U

@y2
= 0 (A2)

subject to boundary conditions

U(x; 0) = V (x; 0) = 0 and U(x;1) = U
1
(x) = 0

(A3)

The �rst signi�cant observation by Prandtl was
that the normal pressure gradient is negligible and
the pressure is a known function of x, which is
assumed to be impressed on the boundary layer
by the inviscid outer 
ow. The second item of
importance is that second derivatives in x have been
lost in the boundary-layer approximation, the result
being parabolic equations in x. The equations may
readily be solved computationally through use of a
marching algorithm with x as the marching variable.

One of the most famous and widely used solutions
to the boundary-layer equations (A1) to (A3) is
the 
at-plate similarity solution obtained by one of
Prandtl's students, Blasius (ref. 48). For a parallel
free-stream 
ow over a 
at plate, the free-stream
velocity U

1
is constant. A stream function is de�ned

in terms of a similarity parameter ~y by

 = (�U
1
x)1=2f(~y) (A4)

where ~y = y
xR

1=2
x . Corresponding velocities are

de�ned by

U =
@ 

@y
and V = �

@ 

@x
(A5)

By substituting the velocities into the boundary-layer
equations, one arrives at the following equation for
the similarity pro�le:

f 000(~y) +
1

2
f(~y)f 00(~y) = 0 (A6)

with boundary conditions from equations (A3), or

f(0) = f 0(0) = 0 and f 00(~y !1)! 1 (A7)

where a prime indicates d=d~y. After equations (A6)
and (A7) are solved, the resulting mean veloc-
ity pro�le components for the boundary layer are
determined from equations (A5) and are given by

U = f 0(~y) and V =
1

2
R
�1=2
x

�
~yf 0(~y)� f

�
(A8)

Moreover, the displacement thickness �� may be
computed and is given by

�� =

Z y!1

0

(1�U) dy =
x
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1=2
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(1� f 0) d~y

=
x

R
1=2
x

lim
~y!1

(~y � f) = 1:7207678
x

R
1=2
x

(A9a)

or
��

x
= 1:7207678R

�1=2
x (A9b)

A Reynolds number based on this local length scale
may be de�ned as R� = U

1
��=�. With equa-

tions (A9), the mean 
ow (eqs. (A8)) can be con-
sistently determined on the DNS mesh so that DNS
result di�erences due to mean-
ow variations are
prevented.

Although the parabolic boundary-layer equa-
tions (A1) and (A2), which describe the mean 
ow,
can be solved computationally by a marching al-
gorithm, it is more convenient to use the similar-
ity formulation equation (A4) and numerically solve
the ordinary di�erential equation (A6). For the
present problem, a �fth-order, �xed-step Runge-
Kutta method described by Luther (ref. 49) is em-
ployed. The solutions are then retained on the
computational mesh.
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Appendix B

Linear Stability Theory

Governing Equations

The well-celebrated Orr-Sommerfeld (refs. 1
and 2) and Squire (ref. 50) equations have led to a
better understanding of the linear region of transi-
tion. These equations are derived from a lineariza-
tion of the Navier-Stokes equations (1) and (2). In
terms of the normal velocity, the Orr-Sommerfeld
equation is given by

�
1

R�
r2 � U

@

@x
�

@

@t

�
r2v �

d2U

d~y2
@v

@x
= 0 (B1)

with boundary conditions

v;
@v

@~y
= 0 at ~y = 0 and v;

@v

@~y
! 0 as ~y !1

(B2)

For 3-D disturbances, the equation for normal vortic-
ity 
, referred to as the Squire equation, is required
in addition to the Orr-Sommerfeld equation. The
Squire equation is

�
1

R�
r2 � U
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@x
�

@

@t

�

�

dU

d~y

@v

@z
= 0 (B3)

with boundary conditions


 = 0 at ~y = 0 and 
! 0 as ~y !1
(B4)

Numerical Methods

For the present study, solutions of the LST equa-
tions (B1) to (B4) are required for an in
ow condi-
tion. A global method is outlined to determine the
discrete spectrum of interest, and a local method is
presented that may be used to track eigenvalues and
corresponding eigenvectors e�ciently.

Both 2-D and 3-D disturbances are assumed to be
travelling waves. A normal-mode form of solution is
assumed and is given by

fv;
g = fv̂; b
g(~y)ei(�x+�z�!t)+Complex conjugate
(B5)

where fv̂; b
g are the complex eigenvectors, ! is the
real frequency, � is the spanwise wave number, and
� = �r+i�i is the complex streamwise wave number.
In stability theory, �i gives a measure of the distur-
bance growth, or decay. The streamwise wavelength
is de�ned by �x = 2�=�r. For 3-D instabilities, the
spanwise wavelength is de�ned by �z = 2�=�.

Substituting the normal-mode form equation (B5)
into equations (B1) to (B4) yields

v̂0000+ a(~y)v̂00+ b(~y)v̂ = 0 (B6)

b
00 + c(~y)b
 + d(~y)v̂ = 0 (B7)

where

a(~y) = �2(�2 + �2)� iR[�Uo(~y)� !]

b(~y) = (�2 + �2)2 + iR(�2 + �2)[�Uo(~y)� !]

+ iR�U 00o (~y)

c(~y) = �(�2 + �2)� iR[�Uo(~y)� !]

d(~y) = �iR�U 0o(~y)

with boundary conditions

v̂; v̂0; b
 = 0 at ~y = 0 and v̂; v̂0; b
! 0 as ~y !1

(B8)

where a prime indicates d=d~y and R = R
1=2
x .

By introducing a temporary dependent vari-
able � = v0, the derivative boundary conditions
are removed. Substituting the derivative matrices
(eqs. (26)), the Chebyshev series, and the temporary
variable into equations (B6) to (B8) leads to

�j �Di;jvj = 0 with �N = 0 (B9)

and

(D3

i;j+Di;jaj)�j+bjvj = 0 with v0 = vN = �0 = 0

(B10)

(D2

i;j + cj)
j + djvj = 0 with 
0 = 
N = 0

(B11)
where

aj = �[2(�
2 + �2) + iR(�Uj � !)]I

bj = [(�2 + �2)2 + i�RU 00

j
+ iR(�2 + �2)(�Uj � !)]I

cj = �[2(�
2 + �2) + iR(�Uj � !)]I

dj = �(i�RU
0

j
)I

and I is the identity matrix.

The spatial stability of the boundary layer is of
interest. The Reynolds number R, frequency !, and
spanwise wave number � are speci�ed, and the com-
plex streamwise wave number � is the eigenvalue.

19



Eliminating the dependent variable � and combin-
ing equations (B9) to (B11) results in the following
matrix eigenvalue problem:

B(�)fvn;
ng
T = 0 (B12a)

where vn and 
n are the coe�cients of the series, or
discrete functional values of the normal velocity and
vorticity at the Gauss-Lobatto points, and

B(�) = C4�
4 +C3�

3 +C2�
2 +C1�+C0

(B12b)

The matrix coe�cients Ci are complex square matri-
ces of order N for 2-D instabilities and of order 2N
for 3-D instabilities. Matrices C4;C3;C2; andC1 are
singular. The eigenvalue problem is nonlinear and of
order four in the eigenvalue �. Various methods are
available to solve such problems. Four approaches
are given in some detail by Joslin (ref. 51). Herein,
a global and a local method are used to generate an
in
ow disturbance forcing for the simulations and are
described next.

Global Method

A global method gives the discrete spectrum of
eigenvalues without a priori knowledge of the value.
A method referred to as the linear companion ma-
trix method was given by Gohberg, Lancaster, and
Rodman (ref. 52). The method has been applied to
the 2-D Orr-Sommerfeld problem with a 
at-plate
boundary layer by Bridges and Morris (ref. 53),
among others.

The linear companion matrix method is a lin-
earization of the nonlinear problem. An algebraic
eigenvalue transformation � = 1=(� � s), where
s = !=0:35, is somewhat arbitrarily used to remove
the singularities in the coe�cient matrices. The
linearization yields

2
66664

�
eC�1

4
eC3 �

eC�1

4
eC2 �

eC�1

4
eC1 �

eC�1

4
eC0

I 0 0 0

0 I 0 0

0 0 I 0

3
77775� �eI = 0

(B13)

where I is the identity matrix of order 2N and eI
is the identity matrix of order 8N . The matriceseC1 to eC4 are nonsingular as a result of the applied
eigenvalue shift. The eigenvalues and corresponding
eigenvectors are found from equation (B13) by using
the QR algorithm.

Local Method

The second solver is a more e�cient local eigen-
value re�ner referred to as the Lancaster re�nement
method (ref. 54). The method requires a su�ciently
accurate initial estimate of the eigenvalue, which can
be obtained from the above global method. The
iterative formula is given by

�i+1 = �i � 2f(�i)=[f2(�i)� f (1)(�i)] (B14a)

where

f(�i) = Tr[B�1(�i)B(1)(�i)] (B14b)

f (1)(�i) = TrfB�1(�i)B(2)(�i)

� [B�1(�i)B(1)(�i)]2g (B14c)

and Tr is the matrix trace, B�1 is the inverse of B

(from eqs. (B12)), andB(j) denotes the jth derivative
of B with respect to �. Upon convergence on the
eigenvalue, the eigenvector may e�ciently be found
by the inverse iteration formula

B(�)fvk+1;
k+1gT = �fvk;
kgT (B15)

where � is a normalizing factor. The procedure con-
verges in two or three iterations for an initial guess of
fv0;
0gT = [1; 1; : : : ; 1]T . Equation (B13) or (B15),
with the continuity equation and the de�nition of
normal vorticity, leads to the eigenfunctions fû; v̂; ŵg
required for the in
ow condition (eqs. (7) and (8)).
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Appendix C

PSE Theory

For the present paper, it is important to test and
to verify the accuracy of the numerical techniques for
the spatial DNS procedure and to make a detailed
comparison with results of PSE theory. For this
reason, brief highlights of some of the important
theoretical and computational aspects of the PSE
theory are given below.

As discussed in section 2, the evolution of dis-
turbances is governed by the unsteady partial di�er-
ential equations (4) to (6). Instead of solving these
equations directly as in the DNS approach, the PSE
theory seeks approximate solutions of the parabo-
lized version of equations (4) to (6). The approxima-
tion needed to parabolize the governing equations,
as �rst suggested by Herbert (ref. 15) and Bertolotti
(ref. 16), includes the following two assumptions:
(1) the dependence of the convected disturbance on
downstream events is negligible and (2) no rapid
streamwise variation (i.e., @2=@x2 << 1) occurs in
the wavelength, the growth rate, the mean velocity
pro�le, and all disturbance pro�les.

For nonlinear disturbances present in the 
ow
�eld, periodicity in both the time domain and
the spanwise domain is assumed and the total
disturbance in the following Fourier series expansion
is

u(x; y; z; t) =

NzX
m=�Nz

NtX
n=�Nt

ûm;n(x; y)e
mi�z�ni!t

(C1)

where Nz and Nt are total numbers of modes kept in
the truncated series and ! and � are the correspond-
ing frequency and spanwise wave number. Equa-
tions (C1) are for velocity components; a similar ex-
pansion can be written for the pressure p. Through
substitution of equations (C1) into the governing
equations (4) to (6), a set of elliptic equations for the
transformed variable ûm;n p̂m;n is obtained. Because
of the wave nature of these transformed variables,
they are decomposed into a fast-oscillatory wave part
and a slow-varying shape function part as

fûm;n; p̂m;ng = feum;n; ~pm;nge
i�m;nx (C2)

The governing equations now reduce to a set of
partial di�erential equations for shape functions

f~um;n; ~pm;ng. In equation (C2), the fast-scale vari-
ation along the streamwise direction x is now rep-
resented by the streamwise wave number �m;n, and
therefore the second-order variation of shape function
in x is negligible (based on assumption 2 above). This
observation leads to the parabolized stability equa-
tions for the shape functions, which are obtained by
neglecting all second derivatives in the streamwise
direction and the terms associated with upstream in-

uence. In other words, through proper choice of
�m;n, the evolution of disturbances can then be de-
scribed by the parabolized equations for the shape
functions.

Based on decomposition equations (C1) and (C2),
the linear PSE can be derived for any disturbance
with given frequency and spanwise wave number. For
nonlinear problems, the following nonlinear terms
must be added to the governing equations:

F(x; y; z; t) = (u � r)u (C3)

Since in the PSE approach the governing equations
are solved in the wave number space, equation (C3)
is expanded to a truncated Fourier series in the wave
number space. The Fourier coe�cients then provide
a nonlinear forcing to each of the linearized shape
function equations. These inhomogeneous equations
for the shape functions are solved by a marching pro-
cedure along the streamwise direction for all Fourier
modes.

Numerically, a second-order backward di�erenc-
ing is employed to integrate the equations in the
streamwise direction. High-order �nite-di�erence
schemes (fourth-order) are employed to discretize the
normal derivatives. The form of boundary condi-
tions required for the PSE approach is of particu-
lar interest. Similar to the DNS approach, no-slip
conditions are applied at the wall. The fundamental
wave and harmonics vanish in the far �eld. To ac-
count for the change of displacement thickness in the
perturbed boundary-layer 
ow, the far-�eld normal
velocity gradients vanish for the mean-
ow distortion
equations.

Chang et al. (ref. 46) have extended the PSE
numerical approach to the study of compressible
boundary layers. With the PSE approach of Chang
et al. for M

1
= 0 and the incompressible results of

Bertolotti (ref. 16), the present comparison with the
DNS results is made.
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Appendix D

Finite Di�erence Relations

The fourth-order �nite-di�erence derivatives at
the boundary (0;Nx) and near-boundary (1;Nx � 1)
nodes are listed below. The �rst derivatives are

f 0
0
=

1

12hx
(�25f0 + 48f1 � 36f2 + 16f3 � 3f4)

f 0
1
=

1

12hx
(�3f0 � 10f1 + 18f2 � 6f3 + f4)

f 0N =
1

12hx
(25fN � 48fN�1 + 36fN�2

� 16fN�3 + 3fN�4)

f 0N�1 =
1

12hx
(3fN + 10fN�1 � 18fN�2

+ 6fN�3 � fN�4) (D1)

The second derivatives are

f 00
0
=

1

12h2x
(35f0 � 104f1 + 114f2 � 56f3 + 11f3)

f 00
1
=

1

12h2x
(11f0 � 20f1 + 64f2 + 4f3 � f4)

f 00N =
1

12h2x
(35fN � 104fN�1 + 114fN�2

� 56fN�3 + 11fN�4)

f 00N�1 =
1

12h2x
(11fN � 20fN�1 + 64fN�2

+ 4fN�3 � fN�4) (D2)
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Figure 1. Computational domain for transitional boundary-layer problem.

Figure 2. Eigenfunctions obtained with local and global spectral-collocation methods and from Jordinson
(ref. 44). N = 32;R� = 998;! = 0:1122;� = 0:3086� i0:0057.

Figure 3. Amplitudes of streamwise and wall-normal velocity components of 2-D disturbance with downstream
distance for parallel boundary layer for in
ow. R�o = 900;Fr = 86;Ao

1;0
= 0.1 percent.

Figure 4. Amplitudes of streamwise and wall-normal velocity components of 2-D disturbance with downstream
distance for parallel boundary layer for in
ow with adequate and inadequate bu�er regions. R�o = 900;
Fr = 86;Ao

1;0
= 0.1 percent.

Figure 5. Amplitudes of streamwise and wall-normal velocity components of 2-D disturbance with downstream
distance for nonparallel boundary layer for in
ow. R�o = 900;Fr = 86;Ao

1;0
= 0.1 percent.

Figure 6. Maximum streamwise amplitudes of fundamental wave u1, mean-
ow distortion u0, and �rst
harmonic u2 with Reynolds number (or downstream distance) for cases DP-41 and DL-41 with in
ow.
R�o = 688:315;Fr = 86;Ao

1;0
= 0.25 percent.

Figure 7. Streamwise and wall-normal velocity components of 2-D disturbance as predicted by LST and PSE
for in
ow. R�o = 688:315;Fr = 86;A0

1;0
= 0.25 percent.

Figure 8. Maximum streamwise amplitudes of fundamental wave u1, mean-
ow distortion u0, and �rst
harmonic u2 with Reynolds number (or downstream distance) for cases DP-61 and DL-61 with in
ow.
R�o = 688:315;Fr = 86;Ao

1;0
= 0.25 percent.

Figure 9. Maximum streamwise amplitudes of fundamental wave u1, mean-
ow distortion u0, and �rst
harmonic u2 with Reynolds number (or downstream distance) for cases DP-81, DP-61, and DP-41 with
in
ow. R�o = 688:315;Fr = 86;Ao

1;0
= 0.25 percent.

Figure 10. Maximum streamwise amplitudes of fundamental wave u1, mean-
ow distortion u0, and �rst
harmonic u2 with Reynolds number (or downstream distance) for PSE cases C-5 and B-6 with in
ow.
R�o = 688:315;Fr = 86;Ao

1;0
= 0.25 percent.

Figure 11. Maximum streamwise amplitudes of fundamental wave u1, mean-
ow distortion u0, and �rst
harmonic u2 with Reynolds number (or downstream distance) for cases DP-81 and C-5 with in
ow.
R�o = 688:315;Fr = 86;Ao

1;0
= 0.25 percent.

Figure 12. Logarithmic maximum streamwise amplitudes of fundamental wave u1, mean-
ow distortion u0, and
�rst harmonic u2 with Reynolds number (or downstream distance) for cases DP-81 and C-5 with in
ow.
R�o = 688:315;Fr = 86;Ao

1;0
= 0.25 percent.

Figure 13. Streamwise disturbance pro�les of mean-
ow distortion u0, fundamental wave u1, and �rst and
second harmonics u2 and u3 with normal distance from wall as predicted by cases DP-81 and C-5 for
R� = 1413.

Figure 14. Streamwise disturbance pro�les of mean-
ow distortion u0, fundamental wave u1, and �rst and
second harmonics u2 and u3 with normal distance from wall as predicted by cases DP-81 and C-5 for
R� = 1519.

Figure 15. Wall-normal disturbance pro�les of mean-
ow distortion v0, fundamental wave v1, and �rst and
second harmonics v2 and v3 with normal distance from wall as predicted by cases DP-81 and C-5 for
R� = 1413.

1



Figure 16. Wall-normal disturbance pro�les of mean-
ow distortion v0, fundamental wave v1, and �rst and
second harmonics v2 and v3 with normal distance from wall as predicted by cases DP-81 and C-5 for
R� = 1519.

Figure 17. Wall-normal component of mean 
ow at far-�eld boundary for Blasius 
ow and from PSE theory.

Figure 18. Maximum streamwise amplitude of fundamental wave u1, mean-
ow distortion u0, and �rst
harmonic u2 with Reynolds number (or downstream distance) for cases DP-61 and C-5 with in
ow.
R�o = 688:315;Fr = 86;Ao

1;0
= 0.25 percent.

Figure 19. Streamwise disturbance pro�les of mean-
ow distortion u0, fundamental wave u1, and �rst and
second harmonics u2 and u3 with normal distance from wall as predicted by cases DP-61 (Dv1 = 0) and
C-5 for R� = 1413.

Figure 20. Streamwise disturbance pro�les of mean-
ow distortion u0, fundamental wave u1, and �rst and
second harmonics u2 and u3 with normal distance from wall as predicted by cases DP-61 (Dv1 = 0) and
C-5 for R� = 1519.

Figure 21. Wall-normal disturbance pro�les of mean-
ow distortion v0, fundamental wave v1, and �rst and
second harmonics v2 and v3 with normal distance from wall as predicted by cases DP-61 (Dv1 = 0) and
C-5 for R� = 1413.

Figure 22. Wall-normal disturbance pro�les of mean-
ow distortion v0, fundamental wave v1, and �rst and
second harmonics v2 and v3 with normal distance from wall as predicted by cases DP-61 (Dv1 = 0) and
C-5 for R� = 1519.

Figure 23. Streamwise and wall-normal velocity components of wave-triad disturbance with downstream
distance at z = 0 for 3-D parallel boundary layer for in
ow. R�o = 900;Fr = 86;Ao

1;0
= 0.01 percent;

Ao

1;�1
= 0.01 percent; �z = 20�.

Figure 24. Streamwise, wall-normal, and spanwise velocity components of wave-triad disturbance with
downstream distance at z = �z=4 for 3-D parallel boundary layer for in
ow. R�o = 900;Fr = 86;
Ao

1;0
= 0.01 percent; Ao

1;�1
= 0.01 percent; �z = 20�.
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